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1. In Corollary 2.20:
Erratum:Then for any x ∈ M/G we have corankη′

x′ = rankG, where η′ is the
projection of η via the canonical map M → M/G.

Corrigendum:Then for any x′ ∈ M/G \ p(µ−1(Singg∗)), where p : M → M/G is
the canonical projection, µ is the moment map and Singg∗ stands for the union of the
coadjoint orbits in g∗ of nonmaximal dimension, we have corankη′

x′ = rankG (η′ is the
projection of η via p).

2. In Proposition 2.21, item (c):
Erratum:η is projectable via the canonical map M → M/G and corankη′

x′ =
rankGS for any x′ ∈ M/G, where η′ is the projection.

Corrigendum:η is projectable via the canonical mapp : M → M/Gand corankη′
x′ =

rankGS for any x′ ∈ M/G \ p(µ−1
S (Singg∗S)), where η′ is the projection and µS :

S → g∗S is the moment map corresponding to the action of GS on (S, η|S) (the set

p(µ−1
S (Singg∗S)) is independent of the choice of S).

3. Theorem 4.2 after assumption (4) should read:
(5) writing µt : M̃ → g̃∗, t ∈ C

2 \ E, µj : Sj → g̃∗j , for the corresponding moment

maps assume that Φ ∪ Φ1 ∪ · · · ∪ ΦN �= M̃, where we put Φ := ⋃
t∈C2\E µ−1

t

(Singg̃∗), Φj := G̃(µ−1
j (Singg̃∗j )).
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Then {ηt} is projectable via the canonical map p : M → M/G and the projection {(ηt)′}
is a bi-Poisson structure Kronecker at any point x′ ∈ p(Rη̃e1 ∩ · · · ∩ Rη̃eN \ (Φ ∪ Φ1 ∪
· · · ∪ ΦN)) iff

rankG̃ = rankG̃1 = · · · = rankG̃N

(here Rη stands for the regularity set of a bivector η, see Definition 2.2).
4. In Definition 5.2 “admissible” should read “(a1, . . . , aN)-admissible” and one more

assumption should be added:
(3) O �⊂ Φ ∪ Φ1 ∪ · · · ∪ ΦN , whereΦ := ⋃

t∈C2\E µ−1
t (Singg∗), Φj = G(µ−1

j

(Singg∗j )), j = 1, . . . , N, and the mapsµt : (g∗)×N → g∗ andµj : (g∗)×N → g∗j
are defined by

µt : (x1, . . . , xN) �→ 1

t1 + a1t2
x1 + · · · + 1

t1 + aNt2
xN,

µj : (x1, . . . , xN) �→ 1

aj − a1
π(x1) + · · · + 1

aj − aj−1
π(xj−1)

+ 1

aj − aj+1
π(xj+1) + · · · + 1

aj − aN

π(xN)

(hereπ is the canonical mapg∗ → g∗j = g∗/g⊥j ).

5. Theorem 5.3 should read:Let O ⊂ (g∗)×N be an (a1, . . . , aN)-admissible G×N -orbit
and let M ⊂ O be an open set such that M/G is a manifold. Then the bi-Poisson
structure {ηt}|M is projectable via the canonical map p : M → M/G and the projection
{(ηt)′} is a micro-Kronecker bi-Poisson structure (see Definition 3.5)on M ′ = M/G.
More precisely, {(ηt)′} is Kronecker at any x′ ∈ M ′ \ p(R∪ Φ ∪ Φ1 ∪ · · · ∪ ΦN), where
R ⊂ (g∗)×N is the algebraic set of all elements with a nondiscrete G-stabilizer.

6. In the proof of Theorem 5.3 the following argument should be added: 4.2(5) follows
from 5.2(3).

7. Theorem 5.7 should read:Assume G is semisimple. Then a generic G×N -orbit O =
Gx1×· · ·×GxN ⊂ (g∗)×N is (a1, . . . , aN)-admissible for any N ≥ 2and any (different)
a1, . . . , aN .

8. In the proof of Theorem 5.7 the following argument should be added: Condition (3) of
Definition 5.2 follows from the facts that codim Singg∗ ≥ 3 for semisimpleg (conse-
quently codimΦ ≥ 1) and that Singg∗j = ∅, j = 1, . . . , N.
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